Adding FIM to Openstack

David Chadwick

University of Kent

Contents

How OpenStack works
Our first FIM implementation
Our second FIM implementation

The official OpenStack release (scheduled for
April 2014) — still tentative

Authentication in OpenStack

Keystone

Trust
Relationship

Open Stack Summit, Portland, SWlft/G Ia nce etc. 3

18/04/2013

Authorisation in OpenStack

* Keystone token contains user’s ID and roles

* Services then use either user’s roles and RBAC to
grant access to resources, or user’s ID and DAC

* |n order to add FIM to OpenStack we do not need
to change any of the OpenStack services provided
Keystone still returns the same token as in the
non-federated case

— Services will be ignorant of federation

Keystone Internal Architecture

Request

Keystone

Middleware Components

<€

Response

e e E———

Pipeline

Router
Authn
> /tokens)
List the
Jusers USErs
/... 5>

Service Modules

Keystone Authn Module

Keystone’s authentication module supports
multiple authn methods, each as plugins.

Password and External are provided as core
components. Users can also define their own

Password uses backend LDAP to authenticate
user

External is for when Keystone is run in Apache
HTTP Server (using mod_wsgi) and it passes the
authenticated username to Keystone using the
REMOTE_USER environment variable

Kent’s Initial Implementation -
Protocol Independent Pipeline Plugin

* Chosen because easiest for admins to add FIM — only

need to change Keystone config file. No code changes
needed

* FIM Plugin has three protocol dependent methods

— Get IdP Request — get protocol specific request message to
be sent to IdP

— [Negotiate Parameters — optional for those protocols that
need it such as ABFAB |

— Validate IdP Response — protocol specific way of validating
IdP’s response

e Common output at the end

FIM Protocol Output

* Federation wide Unique ID of end user

* Set of {Set of user identity attributes and
name of IdP that asserted them}

— Caters for future attribute aggregation

» Validity time of asserted identity

ABFAB — SAML EAP Profile

Picture courtesy
of BeSTGRID
University of
Auckland, NZ

7. A SAML assertion may
be conveyed to the
service using the SAML
RADIUS binding.

5. The user agent derives the
EAP MSK, which in turn is 4. The user agent's
used to derive the GSS credentials are transported
session key. and authenticated using EAP.
User Agent Service Provider Identity Provider
EAP peer ’k*& ----------- ST R R > EAP server
A A
GSS i GSS LAAA ' AAA
[o A s e > -
GSS EAP mecH - - alalsltlatsl >
S s ain L K AAA transport
Application & 3------ > Application
Protocol

1. The application
protocol provides
framing for the GSS
context establishment.
This channel may be
protected by TLS.

3. The AAA transport
provides a mechanism
to transport the
credentials, EAP MS3K,
channel bindings and

SAML messages.

GSS-APL.

2. The GSS EAP mechanism

provides an EAP "lower layer",

allowing the encapsulation of
EAP credentials using the

6. The EAP server derives and
replicates the EAP MSK over the
AAA transport to the service. This is
to derive the service's copy of the
GSS session key.

Federated Authentication

Protocol Independent

Ca
S /\ = X‘AUthGNticat,'omT Federation Handling
‘ Ype:
e 8
&'\/\ \

AN
=~ A

Modified Client Software

Keystone Pipeline

Open Stack Summit, Portland,

18/04/2013 10

Trust in IdPs

Service Catalog

Swift........... Keystone Admin

IdP1 <type> <protocol specific metadata>
Uni Kent <SAML> <X.509 certificate>
Etc.

If an IdP is not in the Service
Catalog it cannot be seen or
used by the user

Open Stack Summit, Portland, 11
18/04/2013

Trust in IdP’s Attributes

* A table stores list of attributes (types and
optional values) that each IdP is trusted to
Issue

 |f asserted attributes are not in this table, they
are thrown away by the protocol independent
code

Gory Details

X-Authentication-Type: federated header only

* Performs Discovery. Returns list of IdPs from Service Catalog to client
Header plus Body contains a JSON array with the chosen IdP
in “idpRequest” element

e Call protocol specific module ‘Get IdP Request’ method and return to
client

Header plus Body contains JSON array with “idpNegotiation”
element

e Call protocol specific module ‘Negotiate Parameters’ method and
return to client

Header plus Body contains a JSON array with an
"idpResponse" element

e Call protocol specific module ‘Validate IdP Response’ method

Magic 1 Auto Provisioning

Open Stack Summit, Portland,
18/04/2013

/ \
‘\Keystone Databay

N~ -

14

Magic 2 - Attribute Mapping

|dP asserted identity
(set of trusted identity
attributes)

Open Stack Summit, Portland,
18/04/2013

Converts it
N}

OpenStack recognised identity
(roles, projects, domains)

Summary of Key Features

 Modular Design

* Most functionality is provided by protocol independent code we
have added to Keystone’s pipeline
— Adding/Retrieving IdPs to enhanced Service Catalog

— Attribute Issuing Policy creation and enforcement - says which IdPs are
trusted to issue which identity attributes to users

— Creating and removing temporary user entries in Keystone

— Attribute Mapper from IdP issued identity attributes into Keystone roles,
projects and domains

— Delegating permissions to IdP administrators to set up the attribute
mappings and attribute issuing policies

* One plug-in module needed that handles the Protocol Specific
features of federated login

— |dP Request preparation
— idP Protocol negotiation (optional)
— |dP Response verification

* Obviously clients have to be tailored to support federated login

Second Implementation — A new
Federated Authn Method

e Took first implementation to Keystone developers for
comment.

 They suggested we create a new Authn method, which they
would integrate into a future release

— So we moved the pipeline code to be a new Authn method
called Federated

— Produces a cleaner implementation. Does not need X-Fed
header

* They said mods they were currently working on would not
require us to keep creating temporary Keystone entries, as
tokens could be issued for external users not in Keystone’s
database

— So we removed this code

Federated Authn Module Validation

Four working implementations:

SAML plugin based on pySAML — how an
operational service in Brazilian academic
network

Keystone plugin — for federating multiple
OpenStack/ Keystone installations together

ABFAB plugin based on Moonshot software

OpenlD Connect plugin (written by PhD
student in Brazil)

Planned OpenStack April Release

» Keystone core developers decided to do a first quick fix
for SAML only using Apache and mod_shib, and
modifying the External authn method to pick up
Remote User and user’s attributes as environmental

parameters

* Will use the attribute mapping functionality from
Kent’s design/implementation to obtain the OpenStack
roles and domains

* This week the core Keystone coders are meeting in

Texas for a “hackathon” to get something working in
time for the April release (codenamed Ice House)

What’s Next?

We no longer need the Federated Authn protocol
independent module if the trust management
code is moved up to the Authn level to cater for
all Authn methods including External

Thus our protocol dependent modules can
become Authn methods in their own right

We have just written a SAML ECP module for
command line clients that can’t use Apache

Next we need to work on support for VOs and
Communities of Interest from ABFAB

